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Abstract
Investigating the long-time asymptotics of the totally asymmetric simple
exclusion process, Sasamoto obtains rather indirectly a formula for the Tracy–
Widom distribution for the Gaussian orthogonal ensemble. We establish that
his novel formula indeed agrees with more standard expressions.

PACS numbers: 05.40.−a, 02.50.−r

1. Introduction

The Gaussian orthogonal ensemble (GOE) of random matrices is a probability distribution on
the set of N × N real symmetric matrices defined through

Z−1 e− Tr(H 2)/2N dH. (1)

Z is the normalization constant and dH = ∏
1�i�j�N dHi,j . The induced statistics of

eigenvalues can be studied through the method of Pfaffians. Of particular interest for us is the
statistics of the largest eigenvalue, E1. As proved by Tracy and Widom [8], the limit

lim
N→∞

P(E1 � 2N + sN1/3) = F1(s) (2)

exists, P being our generic symbol for probability of the event in parenthesis. F1 is called the
GOE Tracy–Widom distribution function. Following [3], it can be expressed in terms of a
Fredholm determinant in the Hilbert space L2(R) as follows:

F1(s)
2 = det(11 − Ps(K + |g〉〈f |)Ps), (3)

where K is the Airy kernel defined through

K(x, y) =
∫

R+

dλ Ai(x + λ)Ai(y + λ), g(x) = Ai(x),

f (y) = 1 −
∫

R+

dλ Ai(y + λ),

(4)

and Ps is the projection onto the interval [s,∞).
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The GOE Tracy–Widom distribution F1(s) turns up also in the theory of one-dimensional
growth process in the KPZ universality class, KPZ standing for Kardar–Parisi–Zhang [4]. Let
us denote the height profile of the growth process at time t by h(x, t), either x ∈ R or x ∈ Z.
One then starts the growth process with flat initial conditions, meaning h(x, 0) = 0, and
considers the height above the origin x = 0 at growth time t. For large t, it is expected that

h(0, t) = c1t + c2t
1/3ξ1. (5)

Here c1 and c2 are constants depending on the details of the model and ξ1 is a random amplitude
with

P(ξ1 � s) = F1(s). (6)

For the polynuclear growth (PNG) model, the height h(0, t) is related to the length of the
longest increasing subsequence of symmetrized random permutations [5], for which Baik and
Rains [1] indeed prove the asymptotics (5) and (6); see [2] for further developments along this
line. Very recently Sasamoto [6] succeeded in proving the corresponding result for the totally
asymmetric simple exclusion process (TASEP). If ηj (t) denotes the occupation variable at
j ∈ Z at time t, then the TASEP height is given by

h(j, t) =




2Nt +
∑j

i=1(1 − 2ηi(t)) for j � 1,

2Nt for j = 0,

2Nt − ∑0
i=j+1(1 − 2ηi(t)) for j � −1,

(7)

with Nt denoting the number of particles which passed through the bond (0, 1) up to time t.
The flat initial condition for the TASEP is . . . 0 1 0 1 0 1 . . . . For technical reasons Sasamoto
takes instead . . . 0 1 0 1 0 0 0 0 0 . . . and studies the asymptotics of h(−3t/2, t) for large t with
the result

h(−3t/2, t) = 1
2 t + 1

2 t1/3ξSA. (8)

The distribution function of the random amplitude ξSA is

P(ξSA � s) = FSA(s) (9)

with

FSA(s) = det(11 − PsAPs). (10)

Here A has the kernel A(x, y) = 1
2 Ai((x + y)/2) and, as before, the Fredholm determinant is

in L2(R).
The universality hypothesis for one-dimensional growth processes claims that in the

scaling limit, up to model-dependent coefficients, the asymptotic distributions are identical.
In particular, since (5) is proved for PNG, the TASEP with flat initial conditions should have
the same limit distribution function, to say

FSA(s) = F1(s). (11)

Our contribution provides a proof for (11).

2. The identity

As written above, the s-dependence sits in the projection Ps . It will turn out to be more
convenient to transfer the s-dependence into the integral kernel. From now on, the determinants
are understood as Fredholm determinants in L2(R+) with scalar product 〈·, ·〉. Thus, whenever
we write an integral kernel like A(x, y), the arguments are understood as x � 0 and y � 0.
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Let us define the operator B(s) with kernel

B(s)(x, y) = Ai(x + y + s). (12)

By [7], ‖B(s)2‖ < 1 and clearly B(s) is symmetric. Thus also ‖B(s)‖ < 1 for all s. B(s) is
trace class with both positive and negative eigenvalues. Shifting the arguments in (10) by s,
one notes that

FSA(s) = det(11 − B(s)). (13)

Applying the same operation to (3) yields

F1(s)
2 = det(11 − B(s)2 − |g〉〈f |), (14)

with
g(x) = Ai(x + s) = (B(s)δ)(x),

f (y) = 1 −
∫

R+

dλ Ai(y + λ + s) = ((11 − B(s))1)(y).
(15)

Here δ is the δ-function at x = 0 and 1 denotes the function 1(x) = 1 for all x � 0. δ and 1
are not in L2(R+). Since the kernel of B(s) is continuous and has super-exponential decay,
the action of B(s) is unambiguous.

Proposition 1. With the above definitions, we have

det(11 − B(s)) = F1(s). (16)

Proof. For simplicity, we suppress the explicit s-dependence of B. We rewrite

F1(s)
2 = det((11 − B)(11 + B − |Bδ〉〈1|))

= det(11 − B) det(11 + B)(1 − 〈δ, B(11 + B)−11〉)
= det(11 − B) det(11 + B)〈δ, (11 + B)−11〉, (17)

since 1 = 〈δ, 1〉. Thus, we have to prove that

det(11 − B) = det(11 + B)〈δ, (11 + B)−11〉. (18)

Taking the logarithm on both sides,

ln det(11 − B) = ln det(11 + B) + ln〈δ, (11 + B)−11〉, (19)

and differentiating it with respect to s results in

−Tr

(
(11 − B)−1 ∂

∂s
B

)
= Tr

(
(11 + B)−1 ∂

∂s
B

)
+

∂
∂s

〈δ, (11 + B)−11〉
〈δ, (11 + B)−11〉 , (20)

where we used
d

ds
ln(det(T )) = Tr

(
T −1 ∂

∂s
T

)
. (21)

Since B(s) → 0 as s → ∞, the integration constant for (20) vanishes and we have to establish
that

−2 Tr

(
(11 − B2)−1 ∂

∂s
B

)
=

∂
∂s

〈δ, (11 + B)−11〉
〈δ, (11 + B)−11〉 . (22)

Define the operator D = d
dx

. Then, using the cyclicity of the trace and lemma 2,

−2 Tr

(
(11 − B2)−1 ∂

∂s
B

)
= −2 Tr((11 − B2)−1DB))

= 〈δ, (11 − B2)−1Bδ〉. (23)
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Using lemma 3 and D1 = 0, one obtains

〈δ, ∂

∂s
(11 + B)−11〉 = 〈δ, (11 − B2)−1Bδ〉〈δ, (11 + B)−11〉. (24)

Thus, (22) follows from (23) and (24). �

Lemma 2. Let A be a symmetric, trace class operator with smooth kernel and let D = d
dx

.
Then,

2 Tr(DA) = −〈δ,Aδ〉, (25)

where DA is the operator with kernel ∂
∂x

A(x, y).

Proof. The claim follows from spectral representation of A and the identity∫
R+

dxf ′(x)f (x) = −f (0)f (0) −
∫

R+

dx f (x)f ′(x). (26)

�

Lemma 3. It holds that

∂

∂s
(11 + B)−1 = (11 − B2)−1BD + (11 − B2)−1|Bδ〉〈δ(11 + B)−1|. (27)

Proof. First notice that ∂
∂s

B ≡ Ḃ = DB. For any test function f ,

(Ḃf )(x) =
∫

R+

dy∂y Ai(x + y + s)f (y)

= −Ai(x + s)f (0) −
∫

R+

dy Ai(x + y + s)f ′(y). (28)

Thus, using the notation P = |Bδ〉〈δ|, one has

DB = −BD − P. (29)

Since ‖B‖ < 1, we can expand ∂
∂s

(11 + B)−1 in a power series and get

∂

∂s
(11 + B)−1 =

∑
n�1

(−1)n
∂

∂s
Bn =

∑
n�1

(−1)n
n−1∑
k=0

BkDBn−k. (30)

Using recursively (29), we obtain

n−1∑
k=0

BkDBn−k = −1 − (−1)n

2
BnD +

n−1∑
j=0

n−1∑
k=j

(−1)j+1BkPBn−k−1

= −1 − (−1)n

2
BnD +

n−1∑
k=0

1 + (−1)k

2
BkPBn−k−1. (31)

Inserting (31) into (30) and exchanging the sums results in

∂

∂s
(11 + B)−1 =

∑
n�1

B2n+1D +
∑
k�0

∑
n�k+1

1 + (−1)k

2
BkP (−B)n−(k+1)

= (11 − B2)−1BD + (11 − B2)−1P(11 + B)−1. (32)

�
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3. Outlook

The asymptotic distribution of the largest eigenvalue is also known for Gaussian unitary
ensemble of Hermitian matrices (β = 2) and Gaussian symplectic ensemble of quaternionic
symmetric matrices (β = 4). As just established, for β = 1,

F1(s) = det(11 − B(s)), (33)

and, for β = 2,

F2(s) = det(11 − B(s)2), (34)

which might indicate that F4(s) equals det(11 − B(s)4). This is however incorrect, since the
decay of det(11 − B(s)4) for large s is too rapid. Rather, one has

F4(s/
√

2) = 1
2 (det(11 − B(s)) + det(11 + B(s))). (35)

This last identity is obtained as follows. Let U(s) = 1
2

∫ ∞
s

q(x) ds with q the unique solution
of the Painlevé II equation q ′′ = sq + 2q3 with q(s) ∼ Ai(s) as s → ∞. Then, the
Tracy–Widom distributions for β = 1 and β = 4 are given by

F1(s) = exp(−U(s))F2(s)
1/2, F4(s/

√
2) = cosh(U(s))F2(s)

1/2, (36)

see [8]. Thus, F4(s/
√

2) = 1
2 (F1(s) + F2(s)/F1(s)), from which (35) is deduced.
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